Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Chemistry ; : e202400366, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506263

RESUMO

Discussed are two picolinate appended bispidine ligands (3,7-diazabicyclo[3.3.1]nonane derivatives) in comparison with an earlier described bis-pyridine derivative, which are all known to strongly bind CuII. The radiopharmacological characterization of the two isomeric bispidine complexes includes quantitative labeling with 64CuII at ambient conditions with high radiochemical purities and yields (molar activities >200 MBq/nmol). Challenge experiments in presence of EDTA, cyclam, human serum and SOD demonstrate high stability and inertness of the 64Cu-bispidine complexes. Biodistribution studies performed in Wistar rats indicate a rapid renal elimination for both 64Cu-labeled chelates. The bispidine ligand with the picolinate group in N7 position was selected for further biological experiments, and its backbone was therefore substituted with a benzyl-NCS group at C9. Two tumor target modules (TMs), targeting prostate stem cell antigen (PSCA), overexpressed in prostate cancer, and the fibroblast activation protein (FAP) in fibrosarcoma, were selected for thiourea coupling with the NCS-functionalized ligand and lysine residues of TMs. Small animal PET experiments on tumor-bearing mice showed specific accumulation of the 64Cu-labeled TMs in PSCA- and FAP-overexpressing tumors (standardized uptake value (SUV) for PC3: 2.7±0.6 and HT1080: 7.2±1.25) with almost no uptake in wild type tumors.

2.
Adv Healthc Mater ; 13(11): e2302609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227977

RESUMO

The extracellular environment regulates the structures and functions of cells, from the molecular to the tissue level. However, the underlying mechanisms influencing the organization and adaptation of cancer in three-dimensional (3D) environments are not yet fully understood. In this study, the influence of the viscosity of the environment is investigated on the mechanical adaptability of human hepatoma cell (HepG2) spheroids in vitro, using 3D microcapsule reactors formed with droplet-based microfluidics. To mimic the environment with different mechanical properties, HepG2 cells are encapsulated in alginate core-shell reservoirs (i.e., microcapsules) with different core viscosities tuned by incorporating carboxymethylcellulose. The significant changes in cell and spheroid distribution, proliferation, and cytoskeleton are observed and quantified. Importantly, changes in the expression and distribution of F-actin and keratin 8 indicate the relation between spheroid stiffness and viscosity of the surrounding medium. The increase of F-actin levels in the viscous medium can indicate an enhanced ability of tumor cells to traverse dense tissue. These results demonstrate the ability of cancer cells to dynamically adapt to the changes in extracellular viscosity, which is an important physical cue regulating tumor development, and thus of relevance in cancer biology.


Assuntos
Cápsulas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Esferoides Celulares , Humanos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Viscosidade , Células Hep G2 , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Cápsulas/química , Alginatos/química , Proliferação de Células , Actinas/metabolismo , Citoesqueleto/metabolismo
3.
Theranostics ; 14(1): 17-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164150

RESUMO

Radionuclide therapies are an important tool for the management of patients with neuroendocrine neoplasms (NENs). Especially [131I]MIBG and [177Lu]Lu-DOTA-TATE are routinely used for the treatment of a subset of NENs, including pheochromocytomas, paragangliomas and gastroenteropancreatic tumors. Some patients suffering from other forms of NENs, such as medullary thyroid carcinoma or neuroblastoma, were shown to respond to radionuclide therapy; however, no general recommendations exist. Although [131I]MIBG and [177Lu]Lu-DOTA-TATE can delay disease progression and improve quality of life, complete remissions are achieved rarely. Hence, better individually tailored combination regimes are required. This review summarizes currently applied radionuclide therapies in the context of NENs and informs about recent advances in the development of theranostic agents that might enable targeting subgroups of NENs that previously did not respond to [131I]MIBG or [177Lu]Lu-DOTA-TATE. Moreover, molecular pathways involved in NEN tumorigenesis and progression that mediate features of radioresistance and are particularly related to the stemness of cancer cells are discussed. Pharmacological inhibition of such pathways might result in radiosensitization or general complementary antitumor effects in patients with certain genetic, transcriptomic, or metabolic characteristics. Finally, we provide an overview of approved targeted agents that might be beneficial in combination with radionuclide therapies in the context of a personalized molecular profiling approach.


Assuntos
Carcinoma Neuroendócrino , Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/metabolismo , 3-Iodobenzilguanidina , Qualidade de Vida , Octreotida , Carcinoma Neuroendócrino/tratamento farmacológico , Radioisótopos/uso terapêutico
4.
EJNMMI Radiopharm Chem ; 9(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165538

RESUMO

BACKGROUND: Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS: An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION: [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.

6.
Eur J Nucl Med Mol Imaging ; 51(4): 1085-1096, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37982850

RESUMO

Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.


Assuntos
Neoplasias Encefálicas , Glioma , Glicina/análogos & derivados , Piridinas , Humanos , Camundongos , Ratos , Animais , Isocitrato Desidrogenase/genética , Glioma/genética , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Encefálicas/genética
8.
ChemMedChem ; 18(18): e202300331, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37565736

RESUMO

The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure-activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.


Assuntos
Neoplasias , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fibrose , Fibroblastos , Diagnóstico por Imagem , Microambiente Tumoral
9.
Cells ; 12(15)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37566045

RESUMO

Cancer patients are at a very high risk of serious thrombotic events, often fatal. The causes discussed include the detachment of thrombogenic particles from tumor cells or the adverse effects of chemotherapeutic agents. Cytostatic agents can either act directly on their targets or, in the case of a prodrug approach, require metabolization for their action. Cyclophosphamide (CPA) is a widely used cytostatic drug that requires prodrug activation by cytochrome P450 enzymes (CYP) in the liver. We hypothesize that CPA could induce thrombosis in one of the following ways: (1) damage to endothelial cells (EC) after intra-endothelial metabolization; or (2) direct damage to EC without prior metabolization. In order to investigate this hypothesis, endothelial cells (HUVEC) were treated with CPA in clinically relevant concentrations for up to 8 days. HUVECs were chosen as a model representing the first place of action after intravenous CPA administration. No expression of CYP2B6, CYP3A4, CYP2C9 and CYP2C19 was found in HUVEC, but a weak expression of CYP2C18 was observed. CPA treatment of HUVEC induced DNA damage and a reduced formation of an EC monolayer and caused an increased release of prostacyclin (PGI2) and thromboxane (TXA) associated with a shift of the PGI2/TXA balance to a prothrombotic state. In an in vivo scenario, such processes would promote the risk of thrombus formation.


Assuntos
Neoplasias , Pró-Fármacos , Trombose , Humanos , Pró-Fármacos/farmacologia , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Células Endoteliais/metabolismo , Ciclofosfamida/uso terapêutico , Sistema Enzimático do Citocromo P-450/metabolismo , Neoplasias/tratamento farmacológico , Trombose/tratamento farmacológico
10.
ACS Omega ; 8(26): 24003-24009, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426243

RESUMO

The development of novel ligands for G-protein-coupled receptors (GPCRs) typically entails the characterization of their binding affinity, which is often performed with radioligands in a competition or saturation binding assay format. Since GPCRs are transmembrane proteins, receptor samples for binding assays are prepared from tissue sections, cell membranes, cell homogenates, or intact cells. As part of our investigations on modulating the pharmacokinetics of radiolabeled peptides for improved theranostic targeting of neuroendocrine tumors with a high abundance of the somatostatin receptor sub-type 2 (SST2), we characterized a series of 64Cu-labeled [Tyr3]octreotate (TATE) derivatives in vitro in saturation binding assays. Herein, we report on the SST2 binding parameters measured toward intact mouse pheochromocytoma cells and corresponding cell homogenates and discuss the observed differences taking the physiology of SST2 and GPCRs in general into account. Furthermore, we point out method-specific advantages and limitations.

11.
Int J Mol Sci ; 24(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298374

RESUMO

Prostate specific membrane antigen (PSMA) is an excellent target for imaging and treatment of prostate carcinoma (PCa). Unfortunately, not all PCa cells express PSMA. Therefore, alternative theranostic targets are required. The membrane protein prostate stem cell antigen (PSCA) is highly overexpressed in most primary prostate carcinoma (PCa) cells and in metastatic and hormone refractory tumor cells. Moreover, PSCA expression positively correlates with tumor progression. Therefore, it represents a potential alternative theranostic target suitable for imaging and/or radioimmunotherapy. In order to support this working hypothesis, we conjugated our previously described anti-PSCA monoclonal antibody (mAb) 7F5 with the bifunctional chelator CHX-A″-DTPA and subsequently radiolabeled it with the theranostic radionuclide 177Lu. The resulting radiolabeled mAb ([177Lu]Lu-CHX-A″-DTPA-7F5) was characterized both in vitro and in vivo. It showed a high radiochemical purity (>95%) and stability. The labelling did not affect its binding capability. Biodistribution studies showed a high specific tumor uptake compared to most non-targeted tissues in mice bearing PSCA-positive tumors. Accordingly, SPECT/CT images revealed a high tumor-to-background ratios from 16 h to 7 days after administration of [177Lu]Lu-CHX-A″-DTPA-7F5. Consequently, [177Lu]Lu-CHX-A″-DTPA-7F5 represents a promising candidate for imaging and in the future also for radioimmunotherapy.


Assuntos
Carcinoma , Ácido Pentético , Animais , Camundongos , Masculino , Ácido Pentético/química , Distribuição Tecidual , Próstata , Linhagem Celular Tumoral , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/química , Células-Tronco , Carcinoma/tratamento farmacológico , Lutécio/química
12.
Cells ; 12(11)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296623

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron disease characterized by sustained loss of neuromuscular junctions, degenerating corticospinal motoneurons and rapidly progressing muscle paralysis. Motoneurons have unique features, essentially a highly polarized, lengthy architecture of axons, posing a considerable challenge for maintaining long-range trafficking routes for organelles, cargo, mRNA and secretion with a high energy effort to serve crucial neuronal functions. Impaired intracellular pathways implicated in ALS pathology comprise RNA metabolism, cytoplasmic protein aggregation, cytoskeletal integrity for organelle trafficking and maintenance of mitochondrial morphology and function, cumulatively leading to neurodegeneration. Current drug treatments only have marginal effects on survival, thereby calling for alternative ALS therapies. Exposure to magnetic fields, e.g., transcranial magnetic stimulations (TMS) on the central nervous system (CNS), has been broadly explored over the past 20 years to investigate and improve physical and mental activities through stimulated excitability as well as neuronal plasticity. However, studies of magnetic treatments on the peripheral nervous system are still scarce. Thus, we investigated the therapeutic potential of low frequency alternating current magnetic fields on cultured spinal motoneurons derived from induced pluripotent stem cells of FUS-ALS patients and healthy persons. We report a remarkable restoration induced by magnetic stimulation on axonal trafficking of mitochondria and lysosomes and axonal regenerative sprouting after axotomy in FUS-ALS in vitro without obvious harmful effects on diseased and healthy neurons. These beneficial effects seem to derive from improved microtubule integrity. Thus, our study suggests the therapeutic potential of magnetic stimulations in ALS, which awaits further exploration and validation in future long-term in vivo studies.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/metabolismo , Neurônios Motores/patologia , Axônios/metabolismo , Organelas/metabolismo , Campos Magnéticos , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
13.
Molecules ; 28(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37299023

RESUMO

Targeting inflammatory mediators and related signaling pathways may offer a rational strategy for the treatment of cancer. The incorporation of metabolically stable, sterically demanding, and hydrophobic carboranes in dual cycloxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids is a promising approach. The di-tert-butylphenol derivatives R-830, S-2474, KME-4, and E-5110 represent potent dual COX-2/5-LO inhibitors. The incorporation of p-carborane and further substitution of the p-position resulted in four carborane-based di-tert-butylphenol analogs that showed no or weak COX inhibition but high 5-LO inhibitory activities in vitro. Cell viability studies on five human cancer cell lines revealed that the p-carborane analogs R-830-Cb, S-2474-Cb, KME-4-Cb, and E-5110-Cb exhibited lower anticancer activity compared to the related di-tert-butylphenols. Interestingly, R-830-Cb did not affect the viability of primary cells and suppressed HCT116 cell proliferation more potently than its carbon-based R-830 counterpart. Considering all the advantages of boron cluster incorporation for enhancement of drug biostability, selectivity, and availability of drugs, R-830-Cb can be tested in further mechanistic and in vivo studies.


Assuntos
Boranos , Inibidores de Lipoxigenase , Humanos , Ciclo-Oxigenase 2 , Inibidores de Lipoxigenase/farmacologia
14.
Front Immunol ; 14: 1166169, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122703

RESUMO

Glioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects. To overcome such limitation, we applied our switchable RevCAR system to target both the epidermal growth factor receptor (EGFR) and the disialoganglioside GD2, which are expressed in GBM. The RevCAR system is a modular platform that enables controllability, improves safety, specificity and flexibility. Briefly, it consists of RevCAR T cells having a peptide epitope as extracellular domain, and a bispecific target module (RevTM). The RevTM acts as a switch key that recognizes the RevCAR epitope and the tumor-associated antigen, and thereby activating the RevCAR T cells to kill the tumor cells. However, in the absence of the RevTM, the RevCAR T cells are switched off. In this study, we show that the novel EGFR/GD2-specific RevTMs can selectively activate RevCAR T cells to kill GBM cells. Moreover, we show that gated targeting of GBM is possible with our Dual-RevCAR T cells, which have their internal activation and co-stimulatory domains separated into two receptors. Therefore, a full activation of Dual-RevCAR T cells can only be achieved when both receptors recognize EGFR and GD2 simultaneously via RevTMs, leading to a significant killing of GBM cells both in vitro and in vivo.


Assuntos
Glioblastoma , Linfócitos T , Humanos , Glioblastoma/patologia , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Epitopos/metabolismo
15.
ChemMedChem ; 18(14): e202300206, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37160667

RESUMO

The presence of inflammatory mediators in the tumor microenvironment, such as cytokines, growth factors or eicosanoids, indicate cancer-related inflammatory processes. Targeting these inflammatory mediators and related signal pathways may offer a rational strategy for the treatment of cancer. This study focuses on the incorporation of metabolically stable, sterically demanding, and hydrophobic dicarba-closo-dodecaboranes (carboranes) into dual cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LO) inhibitors that are key enzymes in the biosynthesis of eicosanoids. The di-tert-butylphenol derivative tebufelone represents a selective dual COX-2/5-LO inhibitor. The incorporation of meta- or para-carborane into the tebufelone scaffold resulted in eight carborane-based tebufelone analogs that show no COX inhibition but 5-LO inhibitory activity in vitro. Cell viability studies on HT29 colon adenocarcinoma cells revealed that the observed antiproliferative effect of the para-carborane analogs of tebufelone is enhanced by structural modifications that include chain elongation in combination with introduction of a methylene spacer resulting in higher anticancer activity compared to tebufelone. Hence, this strategy proved to be a promising approach to design potent 5-LO inhibitors with potential application as cytostatic agents.


Assuntos
Adenocarcinoma , Boranos , Neoplasias do Colo , Humanos , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/química , Microambiente Tumoral
16.
J Clin Endocrinol Metab ; 108(10): 2676-2685, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-36946182

RESUMO

CONTEXT: Pheochromocytomas and paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors. OBJECTIVE: Exploration of the relationship between SSTR2 immunoreactivity and SDHB immunoreactivity, mutational status, and clinical behavior of PPGLs. Evaluation of SSTR-based therapies in metastatic PPGLs. METHODS: Retrospective analysis of a multicenter cohort of PPGLs at 6 specialized Endocrine Tumor Centers in Germany, The Netherlands, and Switzerland. Patients with PPGLs participating in the ENSAT registry were included. Clinical data were extracted from medical records, and immunohistochemistry (IHC) for SDHB and SSTR2 was performed in patients with available tumor tissue. Immunoreactivity of SSTR2 was investigated using Volante scores. The main outcome measure was the association of SSTR2 IHC positivity with genetic and clinical-pathological features of PPGLs. RESULTS: Of 202 patients with PPGLs, 50% were SSTR2 positive. SSTR2 positivity was significantly associated with SDHB- and SDHx-related PPGLs, with the strongest SSTR2 staining intensity in SDHB-related PPGLs (P = .01). Moreover, SSTR2 expression was significantly associated with metastatic disease independent of SDHB/SDHx mutation status (P < .001). In metastatic PPGLs, the disease control rate with first-line SSTR-based radionuclide therapy was 67% (n = 22, n = 11 SDHx), and with first-line "cold" somatostatin analogs 100% (n = 6, n = 3 SDHx). CONCLUSION: SSTR2 expression was independently associated with SDHB/SDHx mutations and metastatic disease. We confirm a high disease control rate of somatostatin receptor-based therapies in metastatic PPGLs.


Assuntos
Neoplasias das Glândulas Suprarrenais , Segunda Neoplasia Primária , Paraganglioma , Feocromocitoma , Humanos , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/terapia , Neoplasias das Glândulas Suprarrenais/metabolismo , Paraganglioma/genética , Paraganglioma/terapia , Paraganglioma/metabolismo , Feocromocitoma/genética , Feocromocitoma/terapia , Feocromocitoma/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Estudos Retrospectivos , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
17.
Acta Biomater ; 162: 211-225, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931420

RESUMO

Extracellular matrix (ECM) provides various types of direct interactions with cells and a dynamic environment, which can be remodeled through different assembly/degradation mechanisms to adapt to different biological processes. Herein, through introducing polyphosphate-modified hyaluronic acid and bioactive glass (BG) nano-fibril into a self-assembled hydrogel system with peptide-polymer conjugate, we can realize many new ECM-like functions in a synthetic polymer network. The hydrogel network formation is mediated by coacervation, followed by a gradual transition of peptide structure from  α-helix to ß-sheet. The ECM-like hydrogels can be degraded through a number of orthogonal mechanisms, including treatments with protease, hyaluronidase, alkaline phosphatase, and calcium ion. As 2D coating, the ECM-like hydrogels can be used to modify the planar surface to promote the adhesion of mesenchymal stromal cells, or to coat the cell surface in a layer-by-layer fashion to shield the interaction with the substrate. As ECM-like hydrogels for 3D cell culture, the system is compatible with injection and cell encapsulation. Upon incorporating fragmented electrospun bioactive glass nano-fibril into the hydrogels, the synergetic effects of soft hydrogel and stiff reinforcement nanofibers on recapitulating ECM functions result in reduced cell circularity in 3D. Finally, by injecting the ECM-like hydrogels into mice, gradual degradations over a time period of one month and high biocompatibility have been shown in vivo. The contribution of complex network dynamics and hierarchical structures to cell-biomatrix interaction can be investigated multi-dimensionally, as many mechanisms are orthogonal to each other and can be regulated individually. STATEMENT OF SIGNIFICANCE: A list of native ECM features has attracted the most interest and attention in the research of synthetic biomaterials. In this research, we have described a simple ECM-like hydrogel system in which the complex and elegant functions of native ECM can be recapitulated in a chemically defined synthetic system. The ECM-like hydrogel systems were developed to avoid undesired features of biological substances (e.g., ethical concerns, batch-to-batch variation, immunogenicity, and potential risk of contamination), as well as gaining new functions to facilitate bioengineering applications (e.g., 3D cell culture, injection, and high stability). To this end, we have developed an ECM-like hydrogel system and provide evidence that this purely synthetic biomaterial is a promising candidate for cell bioengineering applications.


Assuntos
Matriz Extracelular , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Matriz Extracelular/química , Materiais Biocompatíveis/farmacologia , Bioengenharia , Peptídeos/química , Polímeros
18.
Biotechnol J ; 18(6): e2200365, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942860

RESUMO

Functional interaction between cancer cells and the surrounding microenvironment is still not sufficiently understood, which motivates the tremendous interest for the development of numerous in vitro tumor models. Diverse parameters, for example, transport of nutrients and metabolites, availability of space in the confinement, etc. make an impact on the size, shape, and metabolism of the tumoroids. We demonstrate the fluidics-based low-cost methodology to reproducibly generate the alginate and alginate-chitosan microcapsules and apply it to grow human hepatoma (HepG2) spheroids of different dimensions and geometries. Focusing specifically on the composition and thickness of the hydrogel shell, permeability of the microcapsules was selectively tuned. The diffusion of the selected benchmark molecules through the shell has been systematically investigated using both, experiments and simulations, which is essential to ensure efficient mass transfer and/or filtering of the biochemical species. Metabolic activity of spheroids in microcapsules was confirmed by tracking the turnover of testosterone to androstenedione with chromatography studies in a metabolic assay. Depending on available space, phenotypically different 3D cell assemblies have been observed inside the capsules, varying in the tightness of cell aggregations and their shapes. Conclusively, we believe that our system with the facile tuning of the shell thickness and permeability, represents a promising platform for studying the formation of cancer spheroids and their functional interaction with the surrounding microenvironment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Cápsulas/química , Alginatos/química , Microambiente Tumoral
19.
J Med Chem ; 66(6): 3818-3851, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36867428

RESUMO

The potential of designing irreversible alkyne-based inhibitors of cysteine cathepsins by isoelectronic replacement in reversibly acting potent peptide nitriles was explored. The synthesis of the dipeptide alkynes was developed with special emphasis on stereochemically homogeneous products obtained in the Gilbert-Seyferth homologation for C≡C bond formation. Twenty-three dipeptide alkynes and 12 analogous nitriles were synthesized and investigated for their inhibition of cathepsins B, L, S, and K. Numerous combinations of residues at positions P1 and P2 as well as terminal acyl groups allowed for the derivation of extensive structure-activity relationships, which were rationalized by computational covalent docking for selected examples. The determined inactivation constants of the alkynes at the target enzymes span a range of >3 orders of magnitude (3-10 133 M-1 s-1). Notably, the selectivity profiles of alkynes do not necessarily reflect those of the nitriles. Inhibitory activity at the cellular level was demonstrated for selected compounds.


Assuntos
Catepsinas , Dipeptídeos , Catepsinas/metabolismo , Dipeptídeos/química , Cisteína , Inibidores de Cisteína Proteinase/química , Catepsina B , Relação Estrutura-Atividade , Nitrilas/química
20.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768397

RESUMO

Although chronic inflammation inhibits bone healing, the healing process is initiated by an inflammatory phase. In a well-tuned sequence of molecular events, pro-inflammatory cytokines are secreted to orchestrate the inflammation response to injury and the recruitment of progenitor cells. These events in turn activate the secretion of anti-inflammatory signaling molecules and attract cells and mediators that antagonize the inflammation and initiate the repair phase. Sulfated glycosaminoglycanes (sGAG) are known to interact with cytokines, chemokines and growth factors and, thus, alter the availability, duration and impact of those mediators on the local molecular level. sGAG-coated polycaprolactone-co-lactide (PCL) scaffolds were inserted into critical-size femur defects in adult male Wistar rats. The femur was stabilized with a plate, and the defect was filled with either sGAG-containing PCL scaffolds or autologous bone (positive control). Wound fluid samples obtained by microdialysis were characterized regarding alterations of cytokine concentrations over the first 24 h after surgery. The analyses revealed the inhibition of the pro-inflammatory cytokines IL-1ß and MIP-2 in the sGAG-treated groups compared to the positive control. A simultaneous increase of IL-6 and TNF-α indicated advanced regenerative capacity of sGAG, suggesting their potential to improve bone healing.


Assuntos
Citocinas , Sulfatos , Ratos , Animais , Masculino , Microdiálise , Ratos Wistar , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...